From Image to Personalized Cardiac Simulation: Encoding Anatomical Structures into a Model-Based Segmentation Framework
نویسندگان
چکیده
Whole organ scale patient specific biophysical simulations contribute to the understanding, diagnosis and treatment of complex diseases such as cardiac arrhythmia. However, many individual steps are required to bridge the gap from an anatomical scan to a personalized biophysical model. In biophysical modeling, differential equations are solved on spatial domains represented by volumetric meshes of high resolution and in model-based segmentation, surface or volume meshes represent the patient’s geometry. We simplify the personalization process by representing the simulation mesh and additional relevant structures relative to the segmentation mesh. Using a surface correspondence preserving model-based segmentation algorithm, we facilitate the integration of anatomical information into biophysical models avoiding a complex processing pipeline. In a simulation study, we observe surface correspondence of up to 1.6 mm accuracy for the four heart chambers. We compare isotropic and anisotropic atrial excitation propagation in a personalized simulation.
منابع مشابه
An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملSIDF: A Novel Framework for Accurate Surgical Instrument Detection in Laparoscopic Video Frames
Background and Objectives: Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for a...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کاملShape-based segmentation and tracking in 4D cardiac MR images
We present a new approach to shape-based segmentation and tracking of multiple, deformable anatomical structures in cardiac MR images. We propose to use an energy-minimizing geometrically deformable template (GDT) which can deform into similar shapes under the in uence of image forces. The degree of deformation of the template from its equilibrium shape is measured by a penalty function associa...
متن کاملGeometrically Deformable Templates for Shape-Based Segmentation and Tracking in Cardiac MR Images
We present a new approach to shape-based segmentation and tracking of multiple, deformable anatomical structures in cardiac MR images. We propose to use an energy-minimizing geometrically deformable template (GDT) which can deform into similar shapes under the in uence of image forces. The degree of deformation of the template from its equilibrium shape is measured by a penalty function associa...
متن کامل